概要:re4;∠FCO=∠FAO=90°。又∵OC是⊙O的半径,∴PC是⊙O的切线。(2)∵PC是⊙O的切线,∴∠PCO=90°。而∠FPA=∠OPC,∠PAF=90°,∴△PAF∽△PCO 。∴。∵CO=OA=,AF=1,∴PC=PA 。设PA=x,则PC=在Rt△PCO中,由勾股定理得,,解得:。∴PC。【考点】切线的判定和性质,垂径定理,圆周角定理,相似三角形的判定和性质,勾股定理。【分析】(1)连接OC,根据垂径定理,利用等角代换可证明∠FAC=∠FCA,然后根据切线的性质得出∠FAO=90°,然后即可证明结论。(2)先证明△PAF∽△PCO,利用相似三角形的性质得出PC与PA的关系,在Rt△PCO中,利用勾股定理可得出x的值,从而也可得出PC得长。6.(2012四川广元9分)如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°,①求A
圆形练习题及答案(三),http://www.jdxx5.com(2)若AF=1,OA=,求PC的长.
【答案】解:(1)证明:连结OC,
∵OE⊥AC,∴AE=CE。∴FA=FC。
∴∠FAC=∠FCA。
∵OA=OC,∴∠OAC=∠OCA。
∴∠OAC+∠FAC=∠OCA+∠FCA,即∠FAO=∠FCO。
∵FA与⊙O相切,且AB是⊙O的直径,∴FA⊥AB。∴∠FCO=∠FAO=90°。
又∵OC是⊙O的半径,∴PC是⊙O的切线。
(2)∵PC是⊙O的切线,∴∠PCO=90°。
而∠FPA=∠OPC,∠PAF=90°,∴△PAF∽△PCO 。∴。
∵CO=OA=,AF=1,∴PC=PA 。
设PA=x,则PC=
在Rt△PCO中,由勾股定理得,,解得:。
∴PC。
【考点】切线的判定和性质,垂径定理,圆周角定理,相似三角形的判定和性质,勾股定理。
【分析】(1)连接OC,根据垂径定理,利用等角代换可证明∠FAC=∠FCA,然后根据切线的性质得出∠FAO=90°,然后即可证明结论。
(2)先证明△PAF∽△PCO,利用相似三角形的性质得出PC与PA的关系,在Rt△PCO中,利用勾股定理可得出x的值,从而也可得出PC得长。
6.(2012四川广元9分)如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD
⊥CD
(1)求证:AE平分∠DAC;
(2)若AB=3,∠ABE=60°,
①求AD的长;②求出图中阴影部分的面积。
【答案】解:(1)证明:连接OE。
∵CD是⊙O的切线,∴OE⊥CD。
∵AD⊥CD,∴AD∥OE。∴∠DAE=∠AEO。
∵OA=OE,∴∠EAO=∠AEO。
∴∠DAE=∠EAO。∴AE平分∠DAC。
(2)①∵AB是⊙O的直径,∴∠AEB=90°。
∵∠ABE=60°,∴∠EAO=30°。∴∠DAE=∠EAO=30°。
∵AB=3,∴在Rt△ABE中,
在Rt△ADE中,∵∠DAE=30°,AE= ,∴。
②∵∠EAO=∠AEO=30°,∴。
∵OA=OB,∴。
∴
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] 下一页