概要:=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。3.奇偶函数运算(1) . 两个偶函数相加所得的和为偶函数。(2) . 两个奇函数相加所得的和为奇函数。(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。(4) . 两个偶函数相乘所得的积为偶函数。(5) . 两个奇函数相乘所得的积为偶函数。(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
高一数学函数奇偶性复习要点,http://www.jdxx5.com
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算
(1) . 两个偶函数相加所得的和为偶函数。
(2) . 两个奇函数相加所得的和为奇函数。
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
(4) . 两个偶函数相乘所得的积为偶函数。
(5) . 两个奇函数相乘所得的积为偶函数。
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.