概要:e;)1.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)之间的函数关系用图像来表示是 。2.下列各问题中,两个变量之间的关系不是反比例函数的是A:小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系。B:菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系。C:一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系。D:压力为600N时,压强p与受力面积S之间的关系。3.如图,A、B、C为反比例函数图像上的三个点,分别从A、B、C向xy轴作垂线,构成三个矩形,它们的面积分别是S1、S2、S3,则S1、S2、S3的大小关系是A:S1=S2>S3 B:S1 C:S1>S2>S3 D:S1=S2=S3(三)解答题(共21分)1.(12分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图像。①请你根据图像提供的信息求出此蓄水池的蓄水量。②写出此函数的解析式③若要6h排完水池中的水,那么每小时的排水量应该是多少?④如果每小时排水量是5m3,那么水池中的水将要多少小时排完?2.(9分)如图正比例函数y=k1x
2017年初二下册数学暑假作业答案,http://www.jdxx5.com(一)、填空题:(每空2分,共12分)
1.长方形的面积为60cm2,如果它的长是ycm,宽是xcm,那么y是x的 函数关系,y写成x的关系式是 。
2.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的 函数,t可以写成v的函数关系式是 。
3.如图,根据图中提供的信息,可以写出正比例函数的关系式是 ;反比例函数关系式是 。
(二)、选择题(5′×3=15′)
1.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)
之间的函数关系用图像来表示是 。
2.下列各问题中,两个变量之间的关系不是反比例函数的是
A:小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系。
B:菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系。
C:一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系。
D:压力为600N时,压强p与受力面积S之间的关系。
3.如图,A、B、C为反比例函数图像上的三个点,分别从A、B、C向xy轴作垂线,构成三个矩形,它们的面积分别是S1、S2、S3,则S1、S2、S3的大小关系是
A:S1=S2>S3 B:S1
C:S1>S2>S3 D:S1=S2=S3
(三)解答题(共21分)
1.(12分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图像。
①请你根据图像提供的信息求出此蓄水池的蓄水量。
②写出此函数的解析式
③若要6h排完水池中的水,那么每小时的排水量应该是多少?
④如果每小时排水量是5m3,那么水池中的水将要多少小时排完?
2.(9分)如图正比例函数y=k1x与反比例函数 交于点A,从A向x轴、y轴分别作垂线,所构成的正方形的面积为4。
①分别求出正比例函数与反比例函数的解析式。
②求出正、反比例函数图像的另外一个交点坐标。
③求△ODC的面积。
www.jdxx5.com综合应用创新
(一) 学科内综合题
如图,Rt△ABO的顶点A(a、b)是一次函数y=x+m的图像与反比例函数 的图像在第一象限的交点,且S△ABO=3。
①根据这些条件你能够求出反比例函数的解析式吗?
如果能够,请你求出来,如果不能,请说明理由。
②你能够求出一次函数的函数关系式吗?如果能,请你求出来,如果不能,请你说明理由。
(二)学科间渗透综合题(15分)
一封闭电路中,当电压是6V时,回答下列问题:
(1)写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式。
(2)画出该函数的图像。
(3)如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由。
(三)综合创新应用题(16分)
如图所示是某个函数图像的一部分,根据图像回答下列问题:
1)、这个函数图像所反映的两个变量之间是怎样的函数关系?
2)、请你根据所给出的图像,举出一个合乎情理且符合图像所给出的情形的实际例子。
3)、写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围。
4)、说出图像中A点在你所举例子中的实际意义。